Hopf bifurcations in time-delay systems with band-limited feedback
نویسندگان
چکیده
We investigate the steady-state solution and it’s bifurcations in time-delay systems with band-limited feedback. This is a first step in a rigorous study concerning the effects of AC-coupled components in nonlinear devices with time-delayed feedback. We show that the steady state is globally stable for small feedback gain and that local stability is lost, generically, through a Hopf bifurcation for larger feedback gain. We provide simple criteria that determine whether the Hopf bifurcation is supercritical or subcritical based on the knowledge of the first three terms in the Taylor-expansion of the nonlinearity. Furthermore, the presence of double-Hopf bifurcations of the steady state is shown, which indicates possible quasiperiodic and chaotic dynamics in these systems. As a result of this investigation, we find that AC-coupling introduces fundamental differences to systems of Ikeda-type [Ikeda et al., Physica D 29 (1987) 223-235] already at the level of steady-state bifurcations, e.g. bifurcations exist in which limit cycles are created with periods other than the fundamental “period-2” mode found in Ikeda-type systems.
منابع مشابه
Time-delay Systems with Band-limited Feedback
Fast nonlinear devices with time-delayed feedback, developed for applications such as communications and ranging, typically include components that are ACcoupled, i.e. components that block zero frequencies. As an example of such a system, we describe a new opto-electronic device with band-limited feedback that uses a Mach-Zehnder interferometer as passive nonlinearity and a semiconductor laser...
متن کاملBifurcation Dynamics in Control Systems
This chapter deals with bifurcation dynamics in control systems, which are described by ordinary differential equations, partial differential equations and delayed differential equations. In particular, bifurcations related to double Hopf, combination of double zero and Hopf, and chaos are studied in detail. Center manifold theory and normal form theory are applied to simplify the analysis. Exp...
متن کاملDynamic bifurcations: hysteresis, scaling laws and feedback control
We review some properties of dynamical systems with slowly varying parameters, when a parameter is moved through a bifurcation point of the static system. Bifurcations with a single zero eigenvalue may create hysteresis cycles, whose area scales in a nontrivial way with the adiabatic parameter. Hopf bifurcations lead to the delayed appearance of oscillations. Feedback control theory motivates t...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کاملBifurcation Analysis of a Semiconductor Laser with Filtered Optical Feedback
We study the dynamics and bifurcations of a semiconductor laser with delayed filtered feedback, where a part of the output of the laser re-enters after spectral filtering. This type of coherent optical feedback is more challenging than the case of conventional optical feedabck from a simple mirror, but it provides additional control over the output of the semiconductor laser by means of choosin...
متن کامل